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1 Energy

At the beginning of a put, the ball’s kinetic energy is E0; when the ball comes
to rest (after a distance S):

E = Ediss + Epot (1)

Where:

• Ediss: ”lost” (dissipated) energy due to rolling friction.

• Epot: Potential energy caused by height difference.
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1.1 Kinetic Energy of a rolling Golf Ball

The kinetic energy consist of translation Etrans and rotation Erot.

Ekin = Etrans + Erot

Furthermore:

Etrans =
m

2
v2 (2)

Erot =
J

2
ω2 (3)

At the condition of pure rolling (without gliding):

v = r · ω (4)

Where:

• m: Mass of the golf ball.

• v: Velocity of the golf ball.

• J : Moment of inertia of the golf ball.

• ω: Angular velocity of the golf ball.

• r: Radius of the golf ball.

Under the (simplifying) assumption of homogeneous mass distribution:

J =
2

5
mr2 (5)

From 2, 3, 5 and 4 it follows:

Ekin =
m

2
v2
(

7

5

)
(6)

1.2 Dissipation and Potential Energy

The work done by rolling friction is:

Ediss =

∫ S

0

mgf · dx (7)

Where f is the coefficient of rolling friction. The force due to the friction
R = fmg acts against the direction of motion.

~R = fmg
~v

|~v|
(8)
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Under the assumption of a constant inclination (angle θ) 7 becomes:

Ediss = m · g · f · cos(θ) · S (9)

The potential energy at the and of the path is:

Epot = m · g · h (10)

Where:

• m: Mass of the golf ball.

• g: Acceleration of gravity on the surface of the earth (9.81m/s2).

• f : Coefficient of rolling friction).

• h: Height difference.

So, (1) becomes:

m · g · h+m · g · f · cos θ · S =
m

2
v2
(

7

5

)
(11)

2 Equation of motion of a rolling ball

2.1 One-dimensional motion

The system can be described by a coordinate x. By denoting v = dx
dt = ẋ and

using (6) und (10), the Lagrange function becomes:

L = T − U =
7

10
mẋ2 −mgx sin(θ)

with
d

dt

dL

dẋ
− dL

dx
= 0

it follows:

mẍ = −5

7
mg sin(θ) (12)

In (12) the rolling friction fr(see (8)) has to be added. Finally, one obtains:

ẍ = −5

7
g(sin(θ)− fr cos(θ)) (13)
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2.2 Rolling Ball on an Inclined Plane

Without restriction of generality, the y-axis is chosen to be parallel to the gra-
dient (Fig. 1).

Figure 1: Fig. Inclined plane: Direction of axes.

A point P on the plane is represented by the vector ~x =

(
x
y

)
.

Since the friction is a vector pointing in the (negative) direction of the motion,
it follows:

~R = fmg
~v

|~v|

~R ‖ ~v

|~v|
=

1√
ẋ2 + ẏ2

(
ẋ
ẏ

)
(14)

The direction of motion can also be expressed by an angle φ with:

tan(φ) =
dy

dx
(15)

As the inclination is less than 4-5%, we will make the approximations:

sin(θ) u θ and cos(θ) u 1
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Lagrange formalism for the derivation of the equation of motion

L = T − U =
7

5
m(ẋ2 + ẏ2)−mgy sin(θ) =

7

5
m(ẋ2 + ẏ2)−mgy · θ

one finally obtains as in (13):

~̈x =

(
ẍ
ÿ

)
= −5

7

fg√
ẋ2 + ẏ2

(
ẋ
ẏ

)
−
(

0
5gθ
7

)
(16)

or

~̈x =

(
ẍ
ÿ

)
= −5

7
g ·
(

f cos(φ)
f sin(φ) + θ

)
; φ = arctan(

ẏ

ẋ
) (17)

The equations (16, 17) are a system of two coupled differential equations, for
which there is no analytical solution in closed form.

3 Input data for a put

3.1 Known values

A player knows the following data for the put to be executed:

Table 1: Parametrization of a put (pure rolling)
Symbol

Speed of the green Ds

Inclination of the green θ
Distance ball to hole S
Angle between fall-line and line ball-hole α
Speed at target ve(rps)

The coefficient of rolling friction can be derived from the Stimp meter distance
S by:

f =
7v20

10 ·Ds · g
(18)

where v0 is the velocity a golf ball when it leaves the Stimp meter (1.83 m/s) .

3.2 Parameters for the execution of the put

For a successful put, the following values are needed:

1. The angle ϕ the ball starts its trajectory (or equivalently ∆ϕ, the differ-
ence between initial direction and the line ball-hole).
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2. The length Scorr, i.e, the length if it were on a plane surface with the same
green speed Ds.

Scorr ad ∆ϕ are calculated from the initial velocities vx;0 and vy;0 a ball had to
be given, if it had a pure rolling motion from the beginning.

Alternative dimensionless form of the equation of motion As it is
shown by Grober (see Grober, 2011), that by rescaling the time, the equation
of motion depends only on the product Ds × θ.
I.e. the initial velocities vx;0 and vy;0 are the same, when the problem ist
standardized:

Ds → λ ·Ds; S → λ · S; θ → θ/λ

Example For a put of length S = 2.5 m with green velocity Ds = 10 ft,
inclination 2%, angle to the fall line α = 57◦ and desired velocity at the target
(hole) of 3 rps (= 0.402 m/s) the initial velocities are:

vx;0 = 1.442 m/s and vy;0 = 1.109 m/s

These initial velocities ar the same as for a put of length S = 2.25 m with green
velocity Ds = 9 ft, inclination 2.22% and same angle to the fall line α and same
desired velocity at the target (in this example, λ = 0.9).

This will be extremely useful for the calculation of the put trajectory!

4 Numerical solution of the equation of motion

4.1 Calculation of the trajectory

The problem can be solved with a numeric ODE solver by.

1. Start at the target with initial conditions = terminal conditions |~v0| = |~ve|.

2. vx;0 = |~v0| cos(γ); vy;0 = |~v0| sin(γ) (see Fig. 2).

3. Let the time run backwards.

4. Find an angle γ, such that the trajectory (running backwards!) passes
close (distance ≤ ε) to the original lie of the ball P0 = (x0, y0).

5. Extract vx(P0) and vy(P0).

6



Figure 2: Fig. 2 Initial angle γ when running the time backwards.

The hole procedure has to be embedded in an optimizing algorithm in order to
find the angle γ.

4.2 Calculation of the initial speed and angle

By means of the velocities vx(P0) and vy(P0) the put direction can be calculated
as follows:
Initial direction:

ϕ = − arctan(vy(P0)/vx(P0) (19)

Initial speed:

v0 =
√
vx(P0)2 + vy(P0)2 (20)

The initial speed v0 corresponds to the speed of a put on a plane surface with

7



the same green peed Ds of length

S0 =
7v20

10 · g · f
(21)

Remark S0 is the distance, where the ball would stop; at the hole, it would
have the velocity ve.

5 Approximation by a Gaussian Process Model

The procedure described in the last section is computationally intensive and
probably too slow for an app in mobile phone. Therefore, I propose an ap-
proximation by a so-called Gaussian-Process Model as described for example in
(Abt, 1998) or in (MacDonald et al., 2015). Basically, it is like an interpolation
algorithm;

1. On a grid of parameters α, Ds · θ and S, the exact values ϕ and v0 are
calculated by numerically solving the ODE (16, 17).

2. Gaussian Process Model needs the inputs X and outputs Y from the grid
with the exact solutions.

3. The result of the Gaussian Process Model is:

• Coefficients (β1, β2, β3).

• Gaussian correlation matrix R.

4. New put parameters (αnew, Snew, Dsθnew)

5. WithX,Y andR, a the estimated values ϕ̂(αnew, Snew, Dsθnew) andv̂0(αnew, Snew, Dsθnew).

6. Only matrix multiplication (!large matrices) are used for the estimation
of ϕ̂ and v̂0.

There is a model for ϕ and v0 for each distinctive value of ve : 2 rps, ..., 6 rps.
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